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Abstract
Managing network configuration and improving service ex-
perience effectively is essential for cellular service providers
(CSPs). This is challenging because of cellular networks’
large scale and complexity, the wide variety of configuration
parameters, and the performance impact tradeoffs result-
ing across multiple metrics and geographical locations. This
paper focuses on learning and using network contexts to
recommend performance-improving configurations. While
learning contexts, one must carefully account for the config-
uration parameter dependency, performance impact confu-
sion that can arise due to co-occurring unrelated changes,
and uneven change deployment distribution across locations.
We present a new solution Chroma that addresses the above
challenges. Using real-world data collected from a large oper-
ational LTE and 5G cellular service provider, we thoroughly
evaluate and demonstrate the efficacy of Chroma. We suc-
cessfully trial Chroma on an operational cellular network
and highlight its benefits in practical settings.

CCS Concepts
• Networks→ Network management;Wireless access
points, base stations and infrastructure; Network ex-
perimentation; • Computing methodologies→ Classi-
fication and regression trees.

Keywords
Network configuration recommendation, Performance im-
pact analysis, Context learning, Configuration change clus-
tering
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1 Introduction
Emerging applications such as autonomous vehicles, drones,
augmented and virtual reality (AR/VR), Internet of Things
(IoT), and high-definition live impose enormous challenges
on cellular networks to provide seamless connectivity and
excellent quality of service (QoS). Cellular service providers
(CSPs) leverage artificial intelligence and machine learning
(AI/ML) techniques in multiple aspects of network design,
planning, optimization, and operations. Configuration tun-
ing and management plays a pivotal role across all aspects
in improving QoS and user experience. Across generations
of cellular networks (from 2G to 5G and beyond), the set of
configuration parameters is extremely huge, and the tuning
process is deemed as art by the service providers leveraging
their domain knowledge and immense experience.

User experience and QoS can be measured using multiple
metrics such as coverage, data throughput (downlink/uplink),
voice call quality, admission failures, or call drops. Different
configuration settings have the potential to have a differ-
ent service performance impact. For example, uptilting a
base station antenna improves coverage, but has the risk
of call drops for far-away users due to radio signal quality.
This results in a performance impact tradeoff that must be
balanced carefully during the tuning process. Further, the
same configuration setting can have a contrasting service
performance impact across diverse locations. For example, a
particular handover configuration may better serve highly
mobile users, such as on high-speed trains or on freeways,
compared to stationary users at residential locations. Thus,
the problem is determining which configuration setting can
provide an optimal impact tradeoff across different locations.
This paper focuses on the challenging problem of tuning
network configuration to improve service performance.
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3GPP self organizing networks (SON) [1–5, 8, 13, 22, 41, 46,
49] automates multiple network configuration phases, such
as capacity optimization and outage restoration. It focuses
on discovering the best configuration for each location by
leveraging performance metrics at the same location. How-
ever, it currently does not learn and incorporate the impacts
across different locations. Furthermore, each SON algorithm
focuses on a specific optimization objective (e.g., through-
put improvement), but does not consider the impact tradeoff
across multiple metrics. Operational deployments of SON
solutions still require network engineers to configure the
range of parameter values and default template values. Dif-
ferent locations may still require different default values to
reach better impact tradeoffs.
Reinforcement learning (RL) and contextual RL have re-

cently been explored for network planning and optimiza-
tion [43, 61]. We assert that RL, deep RL, or contextual RL
cannot be applied easily for cellular network configuration
because of the large number of parameters and the wide
range of values that they can take. This makes it hard to
conduct experimentation of the exponentially large configu-
ration space (also referred to as exploration in the RL setup)
and the time window needed to assess the performance im-
pacts (typically multiple days) for each configuration. In
addition, the seasonal behavior of performance metrics (e.g.,
time of day, weekend versus weekday traffic pattern) in-
troduces new challenges to assess the performance impact
tradeoffs. Contexts derivable using network attributes such
as hardware version, location morphology (urban, suburban,
or rural), base station types (macro, pico, or distributed anten-
nas), carrier frequency, downlink channel bandwidth, traffic
load, user mobility, radio signal quality, and user location
can be on the order of hundreds, and this makes it even more
challenging to scale up exploration across many contexts.
We scope our problem to the exploitation phase (of RL)

with the novel contribution of learning the context under
which the configuration settings yield better performance
tradeoffs. The contexts can be diverse for different sets of
configuration parameters - e.g., morphology could be vital to
set the handover parameters, versus carrier frequency and
channel bandwidth to decide the power settings. We leverage
the massive configuration exploration conducted by network
engineers across the network. Operational practice today is
to leverage domain knowledge and experience to guide the
configuration tuning across different parts of the network.
What lacks today are effective ways to learn and use the con-
texts or location characteristics for network configurations.
We believe the contexts would help with propagating the
beneficial configuration to similar locations. We leave the
exploration of configuration settings to new contexts for the
future.

Challenges: Learning contexts for configuration with per-
formance impacts brings in interesting sets of challenges:
• Configuration parameter dependency: There are cer-
tain groups of parameters that have to be changed close in
time to have the desirable performance impact, whereas
other parameters can be altered independently or in isola-
tion. Identifying such groups of configuration parameters
that have high dependency is nontrivial.

• Performance impact confusion: Assessing the perfor-
mance impact of configuration changes is difficult because
of the confusion caused by the presence of external factors
such as seasonal traffic changes, foliage, weather, software
upgrades, capacity updates or even other configuration
changes at the same location. It is important to account for
the impact confusion when learning the contexts, without
which one may falsely infer a configuration setting to be
inducing an improvement while it is not in reality.

• Uneven distribution during configuration exploration:
Given 𝑘 attributes and each of which can take𝑚 values,
the number of contexts is𝑚𝑘 . Ideally, one has to explore
configuration settings in each of the 𝑚𝑘 contexts to de-
rive the best context under which the configuration yields
the best performance impact. In practice, however, the
locations that have been explored are picked selectively
by the network engineers using their domain knowledge
and experience with location characteristics such as high
traffic or high user mobility. This can result in an uneven
distribution of samples for the learning of the contexts.

• Configuration parameter assertions: Certain config-
uration explorations may only be available with specific
software releases or feature activations. After learning the
contexts, it is important to enforce the parameter asser-
tions, without which the system may not permit imple-
menting the configuration changes.

Our solution: We propose a new solution Chroma that
learns the context after the exploitation phase and recom-
mends configuration changes using the contexts for simi-
lar locations. We formulate context learning as a classifi-
cation problem with predictors constructed using network
attributes and predictee is the configuration change with
the performance impact (either an improvement, or not an
improvement). We create network attributes using configu-
ration attributes (e.g., morphology, channel bandwidth), and
LMRD attributes (traffic Load, user Mobility, Radio signal
quality, and user Distance using time-series data). We use
a composite quality index (CQI) which is a weighted func-
tion of the key performance indicators (KPIs) to capture the
impact tradeoffs. Specifically, Chroma workflow includes
• Configuration change grouping. We fetch configura-
tion changes across locations and group changes occur-
ring at the same location and close in time using posterior
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probability and Jaccard’s similarity. This captures configu-
ration changes always deployed together and have a high
likelihood of jointly inducing the performance impact.

• Performance impact de-confusion and labeling.We
conduct a statistical pre/post impact comparison of perfor-
mance across locations with configuration change (study
group) and without (control group). The study versus con-
trol relative comparison helps eliminate the effect of ex-
ternal factors. We further de-confuse the performance im-
pacts by identifying locations with only a single group
of similar configuration changes or isolated configuration
changes that are not part of any group. In other words, we
eliminate locations that have coincidentally co-occurring
groups of configuration changes for which we do not know
which group is actually causing the impact.

• Performance impact classification and configuration
recommendation. Once we have the accurate perfor-
mance impact labels after the de-confusion, we prepare
for the classification task. For the unobserved attributes,
we fill-in the impact labels as inconclusive resulting in
two classes of labels – one for improvement and other
no impact which captures any degradation, no impact or
inconclusive. We then use RIPPER [16] and decision tree
classifiers to learn the context or the set of attributes that
best explain the performance improvements. Given the
contexts or rules output from the classifiers, we recom-
mend configuration changes to the locations that match
the contexts but have different configuration settings.

• Parameter value spatial clustering. To enforce parame-
ter assertions due to software versions or certain features,
we use the configuration snapshots (instead of configura-
tion changes) to derive similar parameter values across
locations. We use the spatial clusters to then append our
configuration recommendation with more configuration
changes that would have otherwise violated the assertions.
Chroma can be viewed as a first step in improving configu-

ration exploitation with the goal of optimizing performance
experience using changes implemented in the past. Change
clustering and impact de-confusion are key components to at-
tain our goal. We believeChromawill serve as a foundational
component to conduct a better configuration exploration.
Our contributions:

• In Section 3, we use a massive data set collected from a
large LTE and 5G cellular service provider to quantitatively
highlight the existence of impact tradeoffs across multi-
ple performance metrics and locations, the application of
configuration changes close in time that causes impact
confusion, the large search space of configuration param-
eters and range of their values, and finally the uneven
distribution of configuration explorations. This strongly
motivates the design of our solution Chroma.

• We present the design and implementation of our new
solution Chroma (in Section 4) to automatically learn the
context using configuration changes, their performance
impacts and a wide variety of network attributes. Chroma
recommends configuration changes to locations matching
the contexts with the intention of improving the perfor-
mance impact tradeoffs.

• We conduct an in-depth and thorough evaluation of Chroma
using a large dataset collected from a very large live cel-
lular network (Sec. 5) and demonstrate the importance of
configuration change grouping and impact de-confusion.

• Finally, we successfully conduct trials of our recommenda-
tions (210K+ configuration changes) across 17 major mar-
kets (can also be viewed equivalent to US states). On 80%+
locations, we notice improvements to performance impact
tradeoffs highlighting the practical benefits of Chroma. In
some scenarios, we notice that the location characteristics
(e.g., co-existence or not of LTE and 5G) cause no improve-
ments in the tradeoffs – this was considered acceptable
by the network engineers and decision was made not to
roll-back any changes since this prepares them for future
changes in network behaviors.

Ethics Statement:No personally identifiable information
(PII) is used. This work does not raise any ethical concern.

2 Related work
There has been a surge of significant works from industry
and academia in the area of configuration synthesis [6, 10–
12, 17, 20, 32, 36, 45, 48, 52–54] , verification [9, 12, 18, 19,
21, 24–26, 29, 30, 34, 35, 38, 39, 44, 47, 50, 51, 58, 59], and
tuning [1–3, 8, 15, 22, 23, 27, 28, 33, 42, 43, 57, 60, 62]. Config-
uration synthesis aims to start with high-level intent specifi-
cation and automatically generate the low-level node-specific
configuration settings. Since networks keep evolving, it is
important to verify and manage configuration over time.
Verification works focus on comparing network properties
such as reachability to expectation and raise alarms in case
of violations. Configuration tuning involves the process of
changing the configuration with the goal of optimizing a
reward function such as service performance. Next, we de-
scribe works related to configuration tuning and highlight
the differences and benefits of Chroma.
Configanator [43] and ConfigTron [42] proposes to use

a contextual multi-armed bandit approach to dynamically
learn the optimal configuration parameters to improve per-
formance experience in CDN networks. CherryPick [7] and
Metis [31] use Bayesian optimization to identify the best
configuration in cloud environments for big data analyt-
ics workload. Dremel [60] proposes an interesting adaptive
configuration tuning approach to dynamically adjust the
arms within multi-armed bandits and discover the optimal
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configuration for improving performance of RocksDB KV-
store. Auric [36] uses collaborative filtering across network
configuration attributes and parameters to automatically
generate configuration for new carriers added in cellular
networks. Aurora [33] combines configuration and LMR at-
tributes (load, mobility, radio conditions) to learn the setting
configured across majority nodes in the network with the
assumption that majority setting leads to an enhanced per-
formance experience to the users. Self-tune [28] uses online
reinforcement learning to dynamically tune multiple config-
uration parameters jointly in live operational environments
to improve performance for large cluster networks. Otter-
Tune [55] uses unsupervised learning approaches to tune
database configurations. SmartConf [56] focuses on auto-
matically adjusting performance-sensitive configurations to
attain operating constraints in distributed systems such as
Cassandra, HBase, HDFC and MapReduce.

We present a comparison of the works closest to Chroma
in Table 1. We use performance (feedback, and tradeoff),
configuration parameters (large space, and grouping), and
attributes (contextual analysis, learning, and the number of
contexts per parameter) to show that Chroma is the only
one that can tackle all of them. Performance feedback is in-
corporated into the problem formulation by Configanator,
Self-tune, Dremel to discover the optimal configuration set-
ting. However, Auric and Aurora do not model performance
and are primarily driven by the majority setting within the
context. All the existing works focus on a single performance
metric and do not capture the tradeoff across multiple met-
rics. Configanator and Self-tune deal with a small number of
configuration parameters. On the other hand, Auric, Aurora
and Dremel can handle the large number of parameters and
their ranges. Parameter grouping is important to capture the
dependencies and Dremel is the only existing works that
incorporates the dependency by grouping or clustering the
parameters. For contextual analysis, Auric, Aurora and Con-
figanator determine the best configuration setting for each
context, however, Self-tune and Dremel aim to discover the
setting for the whole network instead of for each context.
Context in Configanator is input based on the attributes (e.g.,
traffic, or the number of connections) and is common across
all parameters, but Auric and Aurora automatically learn
the context for each parameter. Thus, Auric and Aurora can
have different contexts for different configuration parame-
ters. This is something we also need for our problem setup
in Chroma where different contexts might yield different
performance impacts across different configuration settings.
Following challenges limit the straightforward applica-

tion of the approaches above and is thus the key distinction
to Chroma. (i) Large number of configuration parame-
ters: All of the existing approaches leveraging reinforcement

Feature Auric
[36]

Aurora
[33]

Configa-
nator [43]

Self-
tune [28]

Dremel
[60] Chroma

Performance
feedback ✓ ✓ ✓ ✓

Performance
tradeoff ✓

Large para-
meter space ✓ ✓ ✓ ✓

Parameter
grouping ✓ ✓

Contextual
analysis ✓ ✓ ✓ ✓

Context
learning ✓ ✓ ✓

Contexts per
parameter ✓ ✓ ✓

Table 1: Related work comparison.
learning or supervised learning operate on a few handful con-
figuration parameters and thus the search space is tractable.
In LTE and 5G cellular networks, thousands of parameters
with huge ranges of their values make it very hard to apply
RL. (ii) Context is hard to specify: Contexts in contex-
tual RL is often input. However, in our case, it is hard to
specify the context under which the configuration setting
will result in performance improvements. Even with domain
knowledge and years of experience, network engineers find
it as a mission impossible task. (iii) Risk of performance
degradation: Assessing performance impact of configura-
tion changes requires on the order of days because of the
variability and seasonality in performance time-series that
could cause incorrect inferences. Any severe degradation
could be detrimental to user experience and retention on the
network. Thus, it is not easy to conduct arbitrary trials on
the operational network.

3 Background and motivation
In this section, we first briefly introduce LTE and 5G cellu-
lar network, followed by analysis conducted using one-year
worth of real-world data collected from live LTE and 5G cel-
lular networks to highlight the motivation behind the design
of Chroma and challenges faced in building our solution.

3.1 LTE and 5G cellular network
3.1.1 Topology: As shown in Fig.1, the nation-wide cellular
network is divided into several regions, and these regions
are subdivided into market clusters and then into markets.
Each market consists of multiple geographical areas tagged
by tracking area codes (TAC) respectively, and is operated
by a team of network engineers responsible for managing
the base stations (BS) - called eNodeB (eNB) in LTE and
gNodeB (gNB) in 5G. A gNB is either non-standalone (NSA)
or standalone (SA). An NSA gNB has a distinct data plane
but is normally co-located with an eNB (together as one BS
site) and share the access control to LTE core network, while
SA gNB operates with independent data plane and access
control to 5G core network. Each BS site is labeled with
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Type Attribute Example Values Attribute Example Values

Configuration
Attributes

Morphology Rural, Suburban, Urban, etc. Cell Type Emergency, C-RAN, etc.
BS Type Pico, Micro, Macro, iDAS, oDAS Bandwidth 5, 10, 15, 20 MHz, etc.

Frequency Bands LTE: LTE-A<LTE-B<LTE-C<LTE-D<LTE-E
5G: 5G-A<5G-B<5G-C<5G-D<5G-E<5G-F MIMO Mode Dynamic Open Loop MIMO

Closed Loop MIMO, etc.

Hardware LTE: HW_V1(.1-3),2(.1,2),3(.1-6),4(.1-5),5(.1-4),6(.1-9)
5G: HW_V1(.1-6),2(.1-6),3(.1-3),4(.1,2) Software LTE: SW_V1(.1,2), 2(.1-5), 3(.1-9)

5G: SW_V1(.1-6), 2(.1-12),3,4,5,6
Type Example Attribute Example Values

LMRD
Attributes

Traffic Load Number of RRC Sessions, Uplink/Downlink PDCP Volume
Uplink/Downlink PDCCH Utilization, PRB Utilization, etc. Very Low, Low, Medium,

High, Very High, etc.UserMobility Intra/Inter-frequency Handover, etc.
Radio Signal RSRP, RSRQ, SNR, etc.
Distance 95% User Distance, Tower Height, etc.

Table 2: Examples of Network Attributes of LTE and 5G Datasets

one USID (universal site identifier). Each BS typically has
multiple faces dividing the space into different sectors, and
each face can operate multiple cells on various frequency
bands (e.g., 5G mmWave operating between 24 to 40 GHz
versus mid/low frequencies on under 6 GHz). In a cellular
network, a cell is the fundamental functional unit where the
configurations are implemented on.

3.1.2 Configuration parameters: The LTE and 5G networks
offer a wide variety of configuration parameters ranging
from admission control, handover management, carrier ag-
gregation, scheduler, interference mitigation, power and
MIMO control. Each parameter either takes an enumerated
list of values (including binary to capture feature activations),
or a range of values (for example, threshold for RSRP of serv-
ing cell can take values between -140 dBm and -43 dBm). We
list description of a few example parameters below:
• threshold3InterFreqQci1, threshold3aInterFreqQci1
are the thresholds for RSRP of serving cell and neigh-
boring cell when the user equipment has voice over LTE
bearer. If the RSRP of the serving value is less than thresh-
old3InterFreqQci1 and the RSRP of the neighbor cell is
greater than threshold3aInterFreqQci1, then handover is
triggered (A5 event).

• thresholdRsrpEndcFilt, thresholdRsrqEndcFilt are
the thresholds for filtering target cells out of the reported
A5 event based on RSRP/RSRQ values due to EN-DC (dual
connectivity between LTE and 5G) capability-based han-
dover. This parameter is important for post-processing the
A5 report.

• qrxLevMin is the minimum RSRP that a base station will
establish or maintain a connection. If the signal strength
falls below this level, the base station will not accept the
connection, and the user will need to try to connect to
another base station with a stronger signal.

3.1.3 Network attributes: Similar to Aurora [37], we extract
the configuration and LMRD attributes from network
inventory snapshots to characterize each cell. The configu-
ration attributes mainly describe the node-related features,
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Figure 1: Nation-wide Cellular Network Topology

Service Type KPI (𝑘𝑖 )

Data

Access Data Access Failure Rate
Drops Data Drop Sessions Rate
Speed Data Throughput

Coverage No Data Service Time

Voice
Access Voice Access Failure Rate
Drops Voice Drop Sessions rate

Coverage No Voice Service Time
Table 3: CQI Decomposition

such as hardware/software version, morphology, frequency
bands, channel bandwidth, MIMO mode, base station type,
and cell type. Meanwhile, the LMRD attributes summarize
the manner of serving area in which traffic load includes
number of radio resource control (RRC) sessions, packet data
convergence protocol (PDCP) volume, user mobility con-
sists of inter/intra-frequency handovers, radio signal quality
comprises of received signal power/quality (RSRP/Q), signal-
to-noise-ratio (SNR) and physical downlink control channel
(PDCCH) utilization. Different from Aurora, we also intro-
duce the distance metrics, such as UE distance and tower
height, to better capture the feature of the surrounding envi-
ronment. Examples of network attributes and their potential
values are listed in Table 2.

3.1.4 KPI and CQI: The cellular service provider monitors a
list of KPIs for each cell every 15 minutes, such as voice/data
accessibility (success rate of call/data establishment) and
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Figure 2: Impact tradeoff widely exists in cellular network. (a) An example of impact tradeoff across KPI metrics. (b) %
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retainability (success rate of call/data completion), down-
link/uplink throughput, intra/inter-frequency handover suc-
cess rate, etc. Meanwhile, to assess the impact tradeoff across
KPIs, the service provider uses a composite index CQI, a
weighted function of KPIs, to comprehensively reflect the
service quality. The CQI is used by the network engineers
to continuously monitor the health of the network and tune
the network configuration parameters. CQI is calculated as∑
𝑖

𝑊𝑖𝑒
(𝐾𝑃𝐼 𝑖∗𝐸𝑖 ) , where𝑊 and 𝐸 is weight and exponential

constant, respectively. The KPIs used to calculate the CQI
are as shown in Table 3. Due to proprietary reasons, we
omit the values of𝑊 and 𝐸. We compare the KPIs as well as
CQI before and after a configuration change to determine
its performance impact. In Chroma, we use CQI as our opti-
mization goal because it captures the tradeoff across multiple
performance metrics. One can easily modify the target CQI
if needed to adopt to different optimization objectives.

3.2 Motivation and challenges

Impact tradeoff across performance metrics: We ob-
serve in the operational network that altering a configuration
may improve some key performance indicator (KPI) metrics
but negatively impact others. This behavior is wide spread
across the network. Although it is not necessarily always
detrimental, a configuration change is deemed unfavorable
when it disrupts the tradeoff among the performance metrics.
Fig. 2(a) presents a typical example wherein the qrxLevMin
threshold (minimum RSRP for users to maintain a connec-
tion with the base station) was reduced that resulted in im-
proving the coverage and increased traffic volume, but also
caused a minor degradation in downlink data throughput
and increased data drop rates. The reason for such a tradeoff
is increasing the coverage with increase in the number of

users implies a higher physical resource block utilization
that would then decrease the data throughput attained by
the users. Furthermore, for edge users, the chance of a data
drop is higher because of the higher distance that the signal
has to propagate. This illustrates the importance of seeking a
configuration setting that enhances the overall performance
impact without impairing individual or multiple metrics.
Fig. 2(b) captures the prevalence of performance impact

tradeoff across pairs of metrics observed across all the config-
uration changes and nodes in the network. The numeric score
for each pair of metric is calculated using the percentage of
locations that have a contrasting performance impact such
as improvement in metric A versus degradation in metric B.
The numbers in Fig. 2(b) capture the percentage of changes
with a high contrasting impact score. Fig. 2(c) shows a CDF
on each variant of configuration change (e.g., parameter 𝑋
from 5 to 10) for the percentage of locations with contrasting
performance impact as shown in Fig. 2(b). As can be seen,
different metrics can be impacted in contrasting directions
for the same configuration change.
Impact tradeoff across locations: The same configuration
change applied at different locations may have different con-
sequences. As illustrated in Fig.2(d), after the same downlink
(DL) reference signal boost change launched on 3 eNodeBs
at different locations, the DL throughput on urban eNodeB
remains the same, but decreases on suburban eNodeB, and
increases on rural eNodeB. The reason for this contrasting
impact is that the rural locations benefit significantly be-
cause coverage gaps are more pronounced, however, while
urban and suburban locations can benefit from signal boost
as well, the signal boost may have detrimental effects due to
increased interference from neighboring cells in a densely
populated area. Hence, the distinct characteristics of differ-
ent locations should also be examined and considered when
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large parameter search space.

we learn the configuration settings to improve service perfor-
mance. In order to understand if the impact tradeoff across
locations is wide spread across network, we show a CDF in
Fig.2(e) on each variant of configuration change (e.g., param-
eter 𝑋 from 5 to 10) for the contrast impact scores across
locations. The contrast impact score for each configuration
change is calculated using the number of locations that ex-
perience improvement (up) as compared to degradations
(down). As can be seen, more than 60% of configuration
changes experience different performance impacts across
different locations. This highlights the importance of learn-
ing which location types (i.e., contexts) experience a better
performance impact tradeoff for the configuration setting.
Configuration changes are applied close in time: The
performance impact of configuration changes can be hard to
identify if configuration changes are applied in close prox-
imity. Fig.3 demonstrates that nearly 90% of both LTE and
5G configuration changes occur with other changes within
a 15-day timeframe (7 days before and after the change) on
the same cell, making it difficult to pinpoint which configu-
ration change is responsible for the impact. This highlights
the importance of grouping related configuration changes
and de-confusing the performance impacts.
Large search space to find the best configuration: Find-
ing the optimal configuration is non-trivial. As shown in
Fig.4, either LTE or 5G cells feature hundreds of parameters
to be tuned, and each one of them with tens of unique values
yields an exponentially large search space across parameters.
This also re-validates that exhaustively trialing all potential
configurations is impossible.
Uneven distribution of trials: Markets vary largely by
size and the number of trials (configuration changes dur-
ing the exploitation phase). Generally, markets with more
cells may frequently tune configurations to optimize the ser-
vice quality, whereas some smaller markets may not have
enough trials so that the local network may be sub-optimal
or even under-performing. This highlights the need to lever-
age configuration knowledge from all locations to improve
under-trialed markets. Furthermore, it is important to care-
fully account for the uneven distribution during the learning
of network contexts. For example, if trials were conducted
only in urban locations and none in rural, then one may in-
correctly infer that the improvement may be prevalent across
all locations irrespective of the underlying morphology.
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Figure 5: Chroma Workflow

4 Chroma design and implementation
We show the overview of Chroma in Fig.5.We designChroma
to be a closed-loop system with three stages of operation:
(i) identifying changes and their performance impacts, (ii)
learning and using context to recommend changes across
the network, and (iii) trialing the changes after seeking ap-
provals from the network engineers. We introduce each of
them in detail in this section.

4.1 Preliminary: key terms
• A cell 𝑑 works with a set of configuration parameters C =

{C1, C2, · · · , C𝑖 }, in which the number of configuration pa-
rameters varies by technology and vendor. Each C𝑖 has a
set of unique values {𝑐1𝑖 , 𝑐2𝑖 , · · · , 𝑐𝑛𝑖 }, in which the number
of unique values varies by C𝑖 . Some C𝑖 may share depen-
dency with other C𝑗 , 𝑗 ≠ 𝑖 . The value of C𝑖 configured on
cell 𝑑 is denoted as 𝑐𝑖 (𝑑 ) .

• A configuration change is defined as "the value ofC𝑖 changes
from 𝑐𝑛𝑖 to 𝑐𝑚𝑖 ", written as 𝑐𝑛→𝑚𝑖 .

• A cell can be characterized with a set of network attributes
A = {A1,A2, · · · ,A𝑖 }, in which the number of attributes
varies by technology. Each attributeA𝑖 has a set of unique
values {𝑎1𝑖 , 𝑎2𝑖 , · · · , 𝑎𝑛𝑖 }, in which the number of unique
values varies by A𝑖 .

Relationship between configuration and attribute. Re-
call that configuration parameters are entities changed at
the cells to improve performance, versus attributes can be
viewed as characteristics of the cells. Details of configuration
parameters and attributes are discussed in Sec 3.1.2 and 3.1.3.

4.2 Configuration change grouping
As discussed in Sec. 3.2, multiple configuration changes may
be applied on the same day or very close in time, making it
difficult to distinguish their respective effects. Nevertheless,
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it is observed that (I) some of the configuration changes tend
to occur simultaneously, and (II) some configuration changes
always trigger other configuration changes. These two ob-
servations may be a result of configuration regulations or
experience of network engineers. With this knowledge, it
is possible to group some configuration changes together
and treat them as a single entity. For instance, for (I), reduc-
ing the uplink channel bandwidth (ULCHBW) always goes
hand-in-hand with increasing downlink channel bandwidth
(DLCHBW), and vice versa, while for (II), reducing ULCHBW
incurs reducing maximum number of uplink UE (MAXNU-
MUEUL), but reducing MAXNUMUEUL does not necessarily
require reducing ULCHBW. In both examples, we should
group the two configuration changes as one.
4.2.1 Grouping two configuration parameters: Suppose there
are two parameters C𝑖 and C𝑗 , and O(·) denotes the set of
date-cell pairs on which the parameter is changed. The ob-
servation (I) can be expressed as O(C𝑖 ) = O(C𝑗 ) and (II) can
be expressed as O(C𝑖 ) ⊆ O(C𝑗 ) or O(C𝑖 ) ⊇ O(C𝑗 ). Note
that (I) is a special case of (II) when O(C𝑖 ) ⊆ O(C𝑗 ) and
O(C𝑖 ) ⊇ O(C𝑗 ). We quantitatively identify these cases by
calculating the posterior probability between C𝑖 and C𝑗 , as
expressed below:

𝑃 (C𝑖 | (C𝑗 ) =
|O(C𝑖 ) ∩ O(C𝑗 ) |

|O(C𝑗 ) |
, 𝑃 (C𝑗 | (C𝑖 ) =

|O(C𝑖 ) ∩ O(C𝑗 ) |
|O(C𝑖 ) |

where | · | represents the cardinality, i.e., number of elements.
Ideally, C𝑖 and C𝑗 should be grouped together either when
O(C𝑖 ) ⊆ O(C𝑗 ), i.e., 𝑃 (C𝑗 |C𝑖 ) = 1, or O(C𝑖 ) ⊇ O(C𝑗 ), i.e.,
𝑃 (C𝑖 |C𝑗 ) = 1. But this method is highly likely to yield false
positive when |O(C𝑖 ) | ≫ |O(C𝑗 ) | or |O(C𝑖 ) | ≪ |O(C𝑗 ) |, or
false negative when the posterior probabilities are very close
but not equal to 1 due to data loss issue. To improve the
clustering quality, we also introduce the Jaccard similarity
metric between O(C𝑖 ) and O(C𝑗 ) as expressed below:

𝐽 (O(C𝑖 ),O(C𝑗 )) =
|O(C𝑖 ) ∩ O(C𝑗 ) |

|O(C𝑖 ) | + |O(C𝑗 ) | − |O(C𝑖 ) ∩ O(C𝑗 ) |

which effectively measures the likelihood of tuning C𝑖 and
C𝑗 together. Given the potential data issue, we empirically
cluster two configuration changes together if they satisfy
the following condition
𝐽 (O(C𝑖 ),O(C𝑗 )) > 0.3 ∧ (𝑃 (C𝑖 |C𝑗 ) > 0.9 ∨ 𝑃 (C𝑗 |C𝑖 ) > 0.9) (1)

4.2.2 Grouping multiple configuration parameters Note that
the posterior probability or Jaccard similarity only measures
the relationship between two sets, which is insufficient for
clustering multiple configuration parameters (> 2) together.
Meanwhile, calculating the posterior probability or similar-
ity among multiple sets is non-trivial since the computation
time grows exponentially with the number of configurations

as
𝑛∑
𝑘=2

𝑛!
(𝑛−𝑘 )!𝑘! ≈ 2𝑛 . To relax this problem, we approximate it
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Figure 6: Example of subgroup and classification
by leveraging the necessary condition that every two mem-
ber in a group should satisfy the condition in Eq.1. We build
an adjacency matrix of which each entry is either 1 or 0 to
specify if a pair of configuration parameters satisfies Eq.1.
Hence, the multi-configuration change grouping problem
becomes to find the maximum cliques1 based on the adja-
cency matrix, which is NP-complete and can be solved using
standard Bron–Kerbosch algorithm [14] with a complexity
of𝑂 (3𝑛/3). In addition to that, we also add a list of groups by
combining the groups sharing members but not including
each other, in which the posterior probability of each ele-
ment given any of the common members is large than 0.9. In
this case, a configuration parameter can belong to multiple
groups. We denote a set of configuration parameters grouped
by their change manner is denoted as G = {C𝑖 , · · · , C𝑗 }.

We give an example as shown in Fig.6(a). Since 𝑶 (C3) is a
subset of both 𝑶 (C1) and 𝑶 (C2), and 𝑶 (C2) ⊂ 𝑶 (C1), hence,
we will have 2 groups {C1, C2, C3} and {C1, C2}.

4.3 Performance impact detection and
de-confusion

4.3.1 Statistical impact detection To identify the performance
impact of configuration changes, we conduct a statistical
comparison of performance metrics 𝑘-day before and after
each change between the study group (locations where the
change is implemented) and the control group (locations
where the change is not implemented around the same time).
By comparing the study and control groups, we can elim-
inate the effect of external factors. Our statistical impact
detection approach is borrowed from [35]. Next, we quantify
the performance impact using a relative median difference
in percentage as follows: 𝛿 =

𝒙̃after−𝒙̃before
𝒙̃before

× 100%, where 𝒙

can be the time series of any KPI or CQI, and ˜(·) represents
the median of the samples observed. We carefully choose
𝑘 = 7 as the observation period to cover the weekly fluc-
tuation. Meanwhile, the outcome of different configuration
changes on different cells may vary largely due to the na-
ture of each configuration parameter and the characteristics
of the cell configured. Empirical evidence suggests that the
configuration change is believed to have an effective impact
if |𝛿 | > 0.5%, where | · | calculates the absolute value. Accord-
ingly, the impact label 𝑌 is assigned "Increase" if 𝛿 > 0.5%,

1A subset of vertices in an undirected graph such that each pair of two
vertices are connected. It is also called complete subgraph.
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"Decrease" if 𝛿 < −0.5%, or "No Impact" if |𝛿 | < 0.5%, which
is further mapped to 1, -1, and 0, respectively.
We use CQI as our target metric to effectively capture

the performance impact tradeoff. However, we notice that
CQI captures no service coverage, but currently does not
incorporate traffic volume in bytes. Thus, we assign the fi-
nal impact label by jointly considering the CQI and traffic
volume. Specifically, an "Increase" label is assigned if either
CQI or traffic volume improves without any degradation in
the other. A "No Impact" label is assigned when there is no
impact or when the impact on the two metrics is in contrast.
Lastly, a "Decrease" label is assigned when at least one of the
two metrics degrades without any improvement in the other.
The numerical label is determined by 𝑠𝑔𝑛(𝑌CQI + 𝑌Traffic),
where 𝑠𝑔𝑛(𝑣) = 𝑣

|𝑣 | is the sign function.

4.3.2 Performance impact de-confusion Given the groups
of configuration changes, we separate the no-confusion
dataset from the all dataset, in which each cell on a certain
day only has configuration changes from group G and there
is no other configuration changes happened 7-day before
and after that change. In this way, we ensure that the impact
is only caused by G. Thus, we throw away samples with
co-occurring configuration changes belonging to different
groups for our no-confusion data. These "confused" samples
are challenging to use in our impact classification because it
is unclear which of the configuration changes actually results
in an improvement to performance. Using real-world data,
we observe sufficient samples in our no-confusion dataset to
enable reliable classification using our network attributes.

4.4 Performance impact classification:
learning contexts

To identify which set of configuration changes is favorable
for which type of cell, it is essential to leverage the classifier
that can find the relationship between the network attributes
and impact of configuration change. To achieve this, we first
divide each group of configurations G into several subgroups
Gs = {𝑐𝑛→𝑚𝑖 , · · · , 𝑐𝑝→𝑞

𝑗
: 𝑖 ≠ 𝑗,𝑚 ≠ 𝑛, 𝑝 ≠ 𝑞} based on the

existing combinations of configuration changes. For each Gs,
we extract a matrix of attributes As in which each row is
a vector of the network attributes of a cell with Gs applied,
along with their corresponding impact labels 𝒀s. We then
augment the dataset by including the data from its conju-
gate, i.e., the subgroup with configuration changes of inverse
direction as G𝑠 = {𝑐𝑚→𝑛

𝑖 , · · · , 𝑐𝑞→𝑝

𝑗
}, whose attributes is

kept as normal As but the impact labels are inversed as −𝒀s.
Meanwhile, to prevent the classifier recommend unseen at-
tributes, we generated a batch of missing attribute Âs data
with "Inconclusive" labels 𝒀s. Each value of an attribute in
Âs is picked from all the possible values other than the val-
ues exist in As and As. Since our goal is to determine the

cells that would be benefited from Gs being applied to them,
i.e., we care more about the "Increase" class, we merge the
"Decrease", "No Impact" and "Inconclusive" classes as one.
Then, the problem becomes a binary classification task. At
this stage, for each Gs, we train a classifier with [As,As, Âs]
as the input and impact labels [𝒀s,−𝒀s, 𝒀s] as the output. An
example of classification data is shown in Fig.6(b).

Since the input data of the network attributes are discrete
values, and the embedding space learned by the classifier
should be comprehensible for the sake of generating the
configuration recommendations, a straightforward approach
is to use the decision tree classifier. However, the decision
tree is infamous for over-fitting to training set, biased on the
class with more data samples, and instability to noisy data.
To mitigate this issue, we also leverage the rule learning
algorithm RIPPER [16], which constructs a list of decisions
by iteratively adding rules to the list and then removing logic
components that are already considered by those rules. For
a given G𝑠 , we pick the rule-set generated by either RIPPER
or Decision Tree depending on which one yields a higher
classification accuracy on all test-set as well as the "Increase"
Class. Then, the branches in decision tree or the rule-set
from RIPPER which produces "Increase" class is translated
to logic clauses in disjunctive normal form (DNF), denoted
as Arule

s . A representative example is shown below
(CELLTYPE = CRAN ∧ DL_PRB = MEDIUM ∧ DISTANCE = LOW)∨
(CELLTYPE = VRAN ∧ TOWER_HEIGHT = MEDIUM ∧ PDCCH_UTIL = MEDIUM)∨
(TOWER_HEIGHT = HIGH ∧ SNR = LOW ∧ MORPHOLOGY = SUBURBAN) ∨ · · ·

Arule
s is our context of network attributes for which the

group of configuration changes have resulted in a perfor-
mance improvement across the network. A cell is considered
a candidate for applying Gs if it possesses network attributes
that satisfy any of the inner-nested condition-combinations
in Arule

s . We denote these candidate cells as S(Arule
s ).

4.5 Parameter value spatial clustering
Other than clustering configurations based on their change
behavior and joint impact on performance, we also run spa-
tial clustering by evaluating parameter value distributions
in a single day. The reason for spatial clustering is that cer-
tain parameter dependencies cannot be discovered using
change clustering alone especially when dependent changes
may be implemented spanning longer time intervals such as
days or only with new feature activations. We denote S(C𝑖 )
as the set of cells that parameter C𝑖 is configured on. The
goal of spatial clustering is to identify parameter clusters
ℭ = {C𝑖 , · · · , C𝑗 } whose value distribution on the same set
of cells exposes strong dependency. As configuration on cells
can be quite heterogeneous, i.e, S(C𝑖 ) may be very different
from S(C𝑗 ), 𝑗 ≠ 𝑖 . While spatial clustering evaluates param-
eter values on the same set of cells, parameters will need
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to go through stage-0 clustering over S(C𝑖 ) with k-means
via word2vec[40]. To obtain parent clusters ℭparent, number
of clusters in k-means is tuned so that parameters in each
ℭparent has a reasonable intersection of cell sites achieved.
Then, for each ℭ𝑘𝑝𝑎𝑟𝑒𝑛𝑡 , 𝑘 ≤ 𝐾 , where 𝐾 is the total num-
ber of parent clusters achieved, we cluster parameters again
based on parameter value distributions on the set of cells
in ℭ𝑘parent. To capture the dependency of value distribution
among parameters in each ℭ𝑘parent, we introduced mutual in-
formation, which measures the mutual dependency between
two variables C𝑖 and C𝑗 , i.e., the amount of information we
can obtain of C𝑗 from observing value distribution of C𝑖 . Sup-
pose 𝑝 (C𝑖 ) is the probability distribution of C𝑖 . The mutual
information between variable C𝑖 and C𝑗 can be defined as
the relative entropy between the joint distribution 𝑝 (C𝑖 , C𝑗 )
and the product of their marginal distributions:

𝐼 (C𝑖 , C𝑗 ) =
∑︁
C𝑖

∑︁
C𝑗

𝑝 (C𝑖 , C𝑗 ) log(
𝑝 (C𝑖 , C𝑗 )

𝑝 (C𝑖 ) · 𝑝 (C𝑗 )
) (2)

From which we can see that 𝐼 ≥ 0, and when 𝐼 = 0, C𝑖 and
C𝑗 becomes independent variables, and the higher 𝐼 is, the
stronger the dependency between C𝑖 and C𝑗 .

Thus, we calculate a similarity matrix 𝑰 where each entry
is the mutual information between a pair of parameters in
ℭ𝑘parent, and then a distance matrix with normalization (1 −
𝑰 /max(𝑰 )). At this stage, we are able to obtain child clusters
ℭ
𝑘,𝑙

child via agglomerative clustering. We tune number of child
clusters so that the given ground truth of parameters known
to be highly dependent on value distributions stay together
in the smallest possible cluster.

For each cluster ℭ, we fetch the list of unique value combi-
nations [ℭ] = [[𝑐𝑛𝑖 , · · · , 𝑐

𝑝

𝑗
], · · · , [𝑐𝑚𝑖 , · · · , 𝑐

𝑞

𝑗
]] and count the

occurrence of each combination. Although each unique value
combination is an existing configuration on some cells in
the live cellular network, but that does not mean every com-
bination is a good one. Hence, we use the occurrence count
to infer the rationality that the combination with higher
occurrence will be preferred.

4.6 Assertion, recommendation and trial

Now, we have the set of cells S(Arule
s ) qualified for the rec-

ommendation Gs = {𝑐𝑛→𝑚𝑖 , · · · , 𝑐𝑝→𝑞

𝑗
}. Suppose the current

configuration of G on cell 𝑑 is denoted as G(𝑑 ) . We then per-
form a two-step assertion for the safety of recommendation.

4.6.1 Candidate assertion: We first check the current config-
urations of each candidate cell 𝑑 ∈ S(Arule

s ) and remove the
candidates whose configurations on G does not match the
initial state in Gs, i.e., the set of candidates after the assertion
is ⌊S(Arule

s )⌉ = {𝑑 : 𝑑 ∈ S(Arule
s ),G(𝑑 ) = {𝑐𝑛𝑖 , · · · , 𝑐

𝑝

𝑗
}}.

4.6.2 Value dependency assertion: As mentioned in Sec.4.5,
the values of some configuration parameters have dependen-
cies among them, but they may not exhibit being configured
at the same time, i.e., in the same configuration change group.
Hence, other than recommending Gs, we may also need to
recommend changes on parameters correlated with them.
Since spatial clusters have no overlapping member with

each other, G can be divided into several no-overlapping
subsets that the elements in each subset are in the same spa-
tial cluster, i.e., {C𝑖 , · · · , C𝑗 : C𝑖 , · · · , C𝑗 ∈ ℭ} ⊆ G. For
a cell 𝑑 ∈ ⌊S(Arule

s )⌉, for such a subset {C𝑖 , · · · , C𝑗 } ⊆
G, we check the current value of other parameters in the
same spatial cluster {𝑐𝑘 (𝑑 ) · · · , 𝑐𝑙 (𝑑 ) }, C𝑘 , · · · , C𝑙 ∈ ℭ. Thus,
we write the vector ℭ(𝑑 ) = [𝑐𝑚𝑖 , · · · , 𝑐

𝑞

𝑗
, 𝑐𝑘 (𝑑 ) , · · · , 𝑐𝑙 (𝑑 ) ] as

{𝑐𝑛→𝑚𝑖 , · · · , 𝑐𝑝→𝑞

𝑗
} is recommended to cell 𝑑 . Then, we fetch

the unique value combinations of ℭ containing 𝑐𝑚𝑖 , · · · 𝑐
𝑞

𝑖
,

denoted as [ℭ]𝑐𝑚
𝑖
,· · · ,𝑐𝑞

𝑗
= [[𝑐𝑚𝑖 , · · · , 𝑐

𝑞

𝑖
, 𝑐𝑟
𝑘
, · · · , 𝑐𝑡

𝑙
], · · · ]. We

pick the row in [ℭ]𝑐𝑚
𝑖
,· · · ,𝑐𝑞

𝑗
with the minimum number of

parameters different from ℭ(𝑑 ) . If there is a tie, we pick the
row with higher occurrence count. Finally, we add these
dependent parameters that are different from the current
settings on cell 𝑑 to the recommendations, denoted as R (𝑑 )

Gs
.

To sum up, for a cell 𝑑 ∈ ⌊S(Arule
s )⌉, we recommend the

group of changes Gs and the supplementary changes R (𝑑 )
Gs

which is the minimum effort to satisfy the parameter value
dependencies ofGs. The recommendations are then passed to
the engineers for review and approval. Finally, the approved
recommendations will be trialed on candidate cells.

5 Evaluation
Our goal for evaluating Chroma is to highlight the effective-
ness of the individual components in improving the accuracy
of change recommendation. We use the classic ML approach
for evaluation by dividing the data into training set (70%)
to first learn the context, followed by configuration change
recommendations and comparisons with testing set (30%)
to calculate the recommendation accuracy. We further seek
help from the engineers to label our recommendations that
they believe would result in a positive performance impact.

We use a very rich dataset collected from a tier-1 cellular
service provider in the United States, covering on the order
of hundreds of thousands of base stations deployed nation-
wide, and spanning time interval over a year from October
2021 to January 2023. For configuration data, we use 355.05
million of 5G, and 12.60 billion of LTE daily configuration
snapshots. These snapshots are recorded for each cell at the
basestation. We do a diff over days to discover configura-
tion changes, yielding around 3.24 million of 5G and 32.27
million of LTE configuration changes. The KPI data is mea-
sured every 15-minutes at each cell and aggregated at daily
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racy VS Historical CQI Percent-
age Improvement

Duration Network Vendor # Para-
meters

# Config
snapshots

# Changes
Captured

May 2022-
Jan 2023 5G NR A 152 249.53M 2.60M

B 38 105.52M 0.64M
Oct 2021-
Jan 2023 4G LTE A 425 5306.17M 10.63M

B 113 7301.08M 21.64M
Table 4: Dataset from operational LTE/5G networks

granularity to enable a pre/post impact comparison around
the configuration changes. We use network attributes using
configuration snapshot as well as time-series data to derive
the LMRD variables. The network attributes are recorded at
a daily level. We have on the order of hundreds of network
attributes. We summarize the details in Table 4.

5.1 Configuration change grouping result
As we discussed in Sec.3.2, configuration changes on the
same cell are applied in close proximity. With the posterior-
probability and Jaccard similarity based grouping, we suc-
cessfully reduce the concurrence of configuration changes
by 45% for LTE and 50% for 5G network. For a 15-day con-
figuration change interval (the black dotted vertical line),
we reduce the confusion by 20% for LTE and 28.5% for 5G
dataset, which means we extract such amount of data from
dirty raw dataset. This important reduction eliminates the
confusion of performance impact arising from unrelated co-
occurring configuration changes. Also, with grouping, we
ensure that our recommendations can account for the depen-
dency across configuration parameters and enable groups of
configuration changes go hand-in-hand.

5.2 Impact classification result
We run the classification task on each group of configura-
tion changes as described in Sec.4.4 using the no-confusion
dataset (∼40% of all dataset) and complete (or, all) dataset,
respectively. We split the datasets with 7:3 for training and
testing. As shown in Fig.8, using no-confusion dataset, over
93.75% of configuration changes for vendor A and 87.5% of
that for vendor B reach classification accuracies over 60%,
which is the threshold for recommending the such config-
uration changes to cell. In comparison, for the all dataset,
only 75% of configurations for vendor A and 60% of that
for vendor B reach classification accuracies over 60%. This
shows that the no-confusion dataset helps identify more
configuration change recommendations (may be better or

worse which we will describe next) compared to the all-
dataset. Fig. 9 shows the improvement in classification accu-
racy of using no-confusion dataset against using all dataset.
We observe that more than 75% of configuration changes
achieve higher classification accuracy with no-confusion
dataset. This demonstrates better quality recommendations
with no-confusion dataset compared to all dataset.

Next, we ask our network engineers to evaluate the qual-
ity of our change recommendations for both no-confusion
and all datasets. We provide them with a list of our distinct
configuration changes and ask them to color code based on
which configuration changes have a higher likelihood of
performance improvement - green for positive recommen-
dation, red for negative implying that they would not like
this change to implemented, and yellow for changes they
are not sure about. Using a threshold of classification accu-
racy of 60%, we label the configuration change to be a true
positive (TP - changes with accuracy ≥ 60% and green label),
false positive (FP - changes with accuracy ≥ 60% and red
label), true negative (TN - changes with accuracy < 60% and
red label) and false negative (FN - change with accuracy <

60% and green label). The reason for the choice of 60% as
the threshold was to balance the tradeoff between the high
number of recommendations and the potential to capture
ones that have higher likelihood of performance improve-
ment. Table 5 shows our results for both vendors across all
configuration changes. The accuracy and F1-score with no-
confusion dataset is better than all dataset. This confirms
that avoiding samples that have confusion of impacts is im-
portant for generating good quality configuration change
recommendations. Precision is the ratio of TP to the sum
of TP and FP. Recall is the ratio of TP to the sum of TP and
FN. Precision and recall are also better with no-confusion
dataset with the exception of precision on all dataset for
vendor𝐴 (91.67%). Note that losing all the confusion samples
might not be good and one could explore better algorithms
at dealing with impact confusion in the future.

We now revisit the threshold for impact classification accu-
racy and the tradeoff compared to the performance improve-
ment opportunity. Fig. 10 shows a scatterplot of classification
accuracy for each configuration change versus the histori-
cal mean improvement in CQI. We obviously want to pick
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Vendor Data Type #Config Change types TP FP TN FN Not Sure Precision Recall Accuracy F1-score

A No-Confusion 160 105 13 0 8 34 88.98% 92.92% 83.33% 90.91%
All Data 99 9 4 14 34 91.67% 87.61% 81.75% 89.59%

B No-Confusion 259 140 7 1 7 104 95.24% 95.24% 90.97% 95.24%
All Data 74 8 0 73 104 90.24% 50.34% 47.74% 64.63%

Total No-Confusion 419 245 20 1 15 138 92.45% 94.23% 87.54% 93.33%
All Data 173 17 4 87 138 91.05% 66.54% 62.99% 76.89%

Table 5: Impact classification accuracy using labels from network engineers on the configuration changes. The F1-score and
accuracy are better using no-confusion dataset compared to all dataset.

#Market #Recomm-
endation

#Applied
Change #Cell #BS Approv-

al Rate
%BS with Im-
provements

17 972,436 210,611 37,189 4,236 21.66% 82.81%

Table 6: Trial statistics
configuration changes for recommendations that have high
classification accuracy. But as can be seen, there are certain
configuration changes with moderate accuracy (e.g., 70-80%)
that have a potential for more performance improvement.
This can be viewed analogous to risk versus reward. For those
changes with lower accuracy but still above our threshold
of 60%, one can pick this recommendation for trial with the
hope of a better CQI improvement. Thus, the recommen-
dations with lower accuracy (higher risk) may sometimes
be worth a trial as long as they have a potential of a better
performance impact (higher reward).

6 Operational Experiences
This section presents our operational experiences trialing
Chroma in a large scale live LTE and 5G cellular network. We
observed improvements in service performance measured
using CQI (composite quality index), confirming the effec-
tiveness of Chroma’s recommendation in practical settings.

6.1 Summary
Using one-year worth of configuration change, service per-
formance, and network attribute data, we first apply Chroma
to learn the contexts and the configuration changes that
have the best likelihood of a service performance improve-
ment.We observe tens of thousands of configuration changes
across the network during this time interval. This provides us
with a rich set of data to conduct our learning. Chroma out-
puts recommendations on the order of hundreds of distinct
configuration changes. We then use the latest configuration
snapshot across the network to identify each cell’s configu-
ration recommendations. Finally, we share the recommenda-
tions with the network engineers to seek their approvals on
which changes can be implemented in the operational field.

Table 6 shows a summary of 17 markets (recall, one or
several markets combined are equivalent to a state in the US)
where we sought approvals and successfully implemented
the changes. Adopting a new capability in production setup
takes time and based on initial successes, engineers quickly
ramp up to sift through the recommendations and start the
change implementation. The number of base stations with

change implementation in Table 6 is 4,236, which is a subset
across all base stations and are selected on different crite-
ria set by the engineers such as the ones that could poten-
tially quickly benefit from configuration tuning, and their
controlled region of optimization. As can also be seen, the
applied changes are are 210K+ and are a subset of the recom-
mendations because the engineers chose the ones in the first
round that could be clear opportunities for improvements
versus those that are kept on the back burner and visited
later through carefully selected and controlled trials.
Engineer approvals. Our overall approval rate is 21.66%.
It will grow over time as the engineers build confidence in
Chroma. The remaining recommendations will be vetted by
the engineers in subsequent iterations. We also observed a
large difference in approval rates across the markets. After
seeking feedback from network engineers, we categorize
the approvals based on three reasons: (i) engineer’s knowl-
edge of the configuration parameters and their comfort level
in experimenting the change in production, (ii) selecting
base station locations which do not conflict with any other
configuration change or software upgrade trials, and (iii)
selecting locations that have a poor service experience and
thus presents with a good potential to experiment the change
and improve the performance.
Performance improvements. As can be seen from Table 6,
we notice performance improvements across 82.81% of the
base stations captured using the CQI metric. This is a signifi-
cant result that demonstrates the effectiveness of Chroma in
recommending and implementing performance improving
configuration changes. These configuration changes were
previously not known to the engineers from the correspond-
ing markets, and thus were considered good recommenda-
tions by Chroma. Also, so far, we have not captured any
unexpected degradation because of Chroma. However, we
have a continuous monitoring in place that conducts the
performance assessment and recommends a roll-back when
there is a significant performance degradation.
6.2 Findings
We present a few interesting use case findings below.
6.2.1 Impact of preamble cyclic shift configuration changes
on CQI Preamble cyclic shift (PRACHCS) setting is important
to determine how many cyclic shifts are needed to generate
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Figure 11: Trial of PRACHCS

the preamble. We recommended increasing the number of
shifts, which improved coverage by extending the cell radius.
This in turn, helped improve the overall CQI index. We show
-7/+7 days pre/post comparison of CQI before and after our
recommended configuration change in Fig. 11. A statistical
pre/post comparison between the study group and control
group yielded a performance improvement.

6.2.2 Impact of EN-DC capability based threshold changes
for RSRP/RSRQ on CQI EN-DC (E-UTRAN New Radio - Dual
Connectivity) is a non-standalone (NSA) feature enabling
users to access both 5G and LTE networks simultaneously.
The EN-DC capability based threshold for RSRP and RSRQ
controls the filtering of target cells using A5 events based on
RSRP and RSRQ values. We learned in Chroma that the con-
figuration setting historically improved performance metrics
measured in the LTE network. However, our recommenda-
tions in some locations did not improve CQI, which was
contrary to our expectation. On further investigation, we dis-
covered that the lack of 5G co-located cells at those locations
did not offload the LTE traffic, and thus the improvements in
LTE CQI were not immediately observed. However, in sev-
eral locations with 5G co-located cells, we also observed that
EN-DC performance were significantly improved indicating
that the users were encouraged to camp on to 5G.

7 Limitations and future opportunities

Insights with confused data: Our current approach in
Chroma for performance impact de-confusion (Sec.4.3.2) is
to eliminate locations on days that have more than one con-
figuration change group. This has the advantage of reducing
false alarms, but has the risk of also losing good samples for
true positives. Roll-back information can also shed light on
changes that should not be recommended. In the future, one
could explore algorithms to preserve locations by re-labeling
the impacts for configuration changes that have no causal
relationships with performance metrics. When there are no
roll-backs, but multiple configuration changes (say 𝐴 and 𝐵),
one can associate this to other locations and identify if 𝐴 or
𝐵 in isolation have similar impacts.
System drift with time: Network evolution is important to
tackle in operational environments, and one has to carefully

conduct periodic re-training to ensure change recommen-
dations keep up with software upgrades, and technology
updates (e.g., dynamic spectrum sharing in 5G). Furthermore,
with the recent surge of video conferencing applications, it
is crucial to incorporate new sets of performance metrics
such as uplink throughput in the impact tradeoffs.
Context definitions andmanagement overhead:A larger
number of contexts can potentially result in increase in
configuration management overhead and difficulty in trou-
bleshooting unexpected impacts across contexts. As more
trials are conducted, Chroma re-learns the contexts where
the configuration change has the best chance of improving
service performance. Our context learning is data-driven and
we believe automated learning of contexts should provide
good insights into explaining the contrasting performance
impacts. We plan to keep our network attributes up-to-date
which should help in better management of contexts.
Adaptation to dynamic configuration changes:The time-
scales of optimization can be more fine-grained such as
every hour or 15-minutes. We anticipate new sets of chal-
lenges with fine-grained optimization such as performance
impact assessment and de-confusion, availability of datasets
in real-time to make faster decisions, and data management
overheads such as missing data or delayed data. We believe
Chroma can serve as core component to expand to dynamic
configuration changes. Intuitively, to handle network events
such as congestion or outages in real-time, one can leverage
configuration changes from similar contexts in the past that
have resulted in restoring performance behaviors.

8 Conclusion
In this paper, we presented the design and implementation
of a new solution Chroma that automatically learns and uses
contexts based on network attributes to recommend configu-
ration changes that are highly likely to improve performance
impact tradeoffs. We motivate the design of Chroma using
data collected from a large operational LTE and 5G cellular
network and present extensive evaluation results to highlight
the classification accuracy of Chroma. Successful implemen-
tation of our trials demonstrates the efficacy of Chroma
in identifying and recommending performance-improving
network configurations.
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