ACM MOBIHOC 2023

2ACE: SPECTRAL PROFILE-DRIVEN MULTI-RESOLUTIONAL COMPRESSIVE SENSING FOR MMWAVE CHANNEL ESTIMATION

Changhan Ge UT Austin

Lili Qiu UT Austin & Microsoft Research Asia

Yin Zhang

October 24 2023 @ Washington DC, United States of America

Sub-6GHz band is becoming more and more crowded...

Beamforming to combat occlusions.

Channel estimation is critical to beamforming

 Adjust the phase & amplitude at each antenna to obtain optimal beam patterns.

• To set the correct combiner and precoder, one need to estimate channel, i.e., How the wave propagates.

mmWave asks for fast and accurate channel estimation methods.

Complex indoor environment

Large antenna array

NOKIA AirScale [1] 64Tx 64Rx Massive MIMO mmWave antenna array

High Mobility

Channel estimation is accomplished through a probing process.

Phase retrieval & difficult problem

Existing approaches on channel estimation

802.11ad Sector Level	Sweep through pre-defined directions.
Sweeping (SLS)	Fast but inaccurate.
ACO [MobiCom'18]	Special codebook. Medium overhead, but course channel estimation.
PhaseLift [CPAM'13]	Compressive sensing recovery. Accurate, but slow & requires large number of probes.
PLGAMP/PLOMP	Low-rank CSI assumption-based compressive sensing.
[MobiHoc'19]	Fast when channel is sparse, otherwise inaccurate.

2ACE investigates how channel matrices looks like, and use the matrix property to improve compressive sensing.

2ACE: <u>Accelerated & Accurate Channel Estimation</u>.

How does actual channel matrix look like?

$$\begin{bmatrix} \bullet & \cdots & \bullet \\ \vdots & \ddots & \vdots \\ \bullet & \cdots & \bullet \end{bmatrix} \xrightarrow{\mathsf{SVD}} U \begin{bmatrix} \sigma_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \sigma_s \end{bmatrix} V^T, \sigma_1 \ge \cdots \ge \sigma_s$$

We use a lower-bound to characterize the energy captured by the first *K* singular values– Called Spectral Profile.

Carnegie

Iniversity

Microsoft

Use the spectral profile as a regularization – 2ACE

Regularization through spectral profile *P*.

The problem can be solved via Alternating Direction Method of Multiplier (ADMM). We then have the Augmented Lagrangian as follow:

$$L(\mathbf{X}, \mathbf{Y}, \mathbf{Z}, \mathbf{M}, \mathbf{N}, \mu) = \frac{1}{2} |||\mathbf{Y}| - \mathbf{b}||_2^2 + I(\mathbf{Z}, P) + \langle \mathbf{M}, \mathbf{A}\mathbf{X} - \mathbf{Y} \rangle + \langle \mathbf{N}, \mathbf{X} - \mathbf{Z} \rangle + \frac{\mu}{2} ||\mathbf{A}\mathbf{X} - \mathbf{Y}||_2^2 + \frac{\mu}{2} ||\mathbf{X} - \mathbf{Z}||_2^2$$
(See our paper for step-by-step math)

TEXAS The University of Texas at Austin Carnegie Mellon University Microsoft

2ACE: Enhancements

Dynamic Update of μ

Define primal residue

 $r_{\text{prim}} = \sqrt{\|\mathbf{A}\mathbf{X}^{(t+1)} - \mathbf{Y}^{(t+1)}\|_{2}^{2}} + \|\mathbf{X}^{(t+1)} - \mathbf{Z}^{(t+1)}\|_{2}^{2}$ How the constraints are satisfied

Define combined residue

$$r_{\text{comb}}^{(t+1)} = \mu r_{\text{prim}}^2 + \mu (\|\mathbf{Y}^{(t+1)} - \mathbf{Y}^{(t)}\|_2^2 + \|\mathbf{Z}^{(t+1)} - \mathbf{Z}^{(t)}\|_2^2)$$

How large is the step length

Algorithm 2 Adaptation of μ

1: if
$$r_{\text{comb}}^{(t+1)} > 0.8 r_{\text{comb}}^{(t)}$$
 then
2: $\mu^{(t+1)} = 1.03 \mu^{(t)}$
3: else
4: $\mu^{(t+1)} = \mu^{(t)}$
5: end if

2ACE: Enhancements

Carnegie

University

ellon

 $\min_{\mathbf{X}} \quad \frac{1}{2} |||\mathbf{Y}| - \mathbf{b}||_2^2 + I(\mathbf{Z}, P)$ subject to $\mathbf{A}\mathbf{X} = \mathbf{Y}$ and $\mathbf{X} = \mathbf{Z}$

Parallel refinement

Microsoft

• Solving *r* candidate *X* in parallel

Spectral Initialization

• Initialize the candidate *X* according to the best rank-*r* estimation.

2ACE: Enhancements

Choice of Spectral Profiles

Algorithm 4 2ACE Algorithm to incorporate dynamic profile

- 1: if $m \ge 3n$ then Large probe number: no spectral profile
- 2: // no need to use spectral profile w/ enough constraints
- 3: $P = \{\}$
- 4: else if m < n then

Small probe number: Coarse spectral profile

- 5: // focus on estimating 1st singular vector w/ too few constraints
- 6: $P = \{(r_1, 0.95)\}$
- 7: else

Medium probe number: Detailed spectral profile

- 8: $P = \{(r_1, f_1), (r_2, f_2), (r_3, f_3), (r_4, f_4)\}$ 9: and if
- 9: **end if**

#Probes m is dependent on the size of the channel matrix.

What if there is no enough probing budget? Probing budget $< N_r N_t$

Multiple antennas can be grouped as one "virtual" antenna.

The beamforming weights on these elements stay the same. The elements of the channel matrix are assumed to be the same.

2ACE: Multi-resolution Channel Estimation

Microsoft

Carnegie

- By grouping N_t/N_r antennas into K groups, we recover a CSI matrix of size $\frac{N_t}{K} \times \frac{N_r}{K}$ instead.
- Challenge: Minimize grouping error.
- -- Selecting antennas with similar channels.

How to **identify antenna with similar channels without channel probing**?

2ACE: Multi-resolution Channel Estimation

Microsoft

• Phase offset comes from two parts:

larnegie

Iniversity

- Hardware offset due to differences in length of transmission line.
 - Calibrate through the method in M-cube [2]
- Phase difference in array response.
 - Estimate through a rough angle estimation.

• We group the antennas with minimum sum of phase offset difference.

Effectiveness of Multi-resolution (Simulation)

2ACE: Confidence indicator

2ACE: Confidence indicator - High confidence

2ACE: Confidence indicator - Low confidence

5% measurement: validation

Evaluation

- Simulation
 - Synthesize CSI matrix using multipath model.
 - Generate CSI matrix using Wireless Insite ray-tracing.
- Testbed
 - 2 laptops with Qualcomm QCA6320-based Baseband NIC
 - o QCA6210-based 32-element antenna array.

CSI Estimation – NMSE (Simulation)

Carnegie

University

Microsoft

PLOMP and **PLGAMP** suffers from over-fitting, as reported.

PhaseLift and Nuclear converges much slower.

2ACE w/ Multi-resolution performs optimally across baselines.

Beamforming – RSS (Simulation)

Microsoft

Carnegie

University

lelloñ

We evaluate beamforming RSS in an indoor environment.

Beamforming – RSS (Testbed)

2ACE w/ Multi-resolution gives 1-9 dB increment compared to different baselines.

Sensing – AoD Estimation

Simulated Top-3 AoD Estimation Error is **nearly 0**.

Testbed dominant AoD Estimation Error is average **2.5 degree**.

Conclusion & Discussion

- Propose **spectral profile** to drive channel estimation
 - Spectral profile can also be applied to other domains besides channel estimation.
- Various optimization techniques for accelerating convergence.
- Multi-resolution for low measurement budget.
 - Multi-resolution can also be used for other compressive sensing algorithms.
- Simulation and testbed experiments show optimality on channel estimation, beamforming gain and angle estimation.

Acknowledgement

Carnegie

University

This work is supported in part by NSF Grant <u>CNS-2008824</u> and <u>CNS-2107037</u>. We appreciate the insightful feedback from ACM MobiHoc 2023 anonymous reviewers.

Ethical Concern

The personnel involved in the experiment are fully insured and paid. No personally identifiable information (PII) was collected during the exploration. This work does not raise any ethical concern.

Authors

Yiwen Song Carnegie Mellon University

Changhan Ge ity UT Austin

Microsoft

Lili Qiu UT Austin & Microsoft Research Asia

Yin Zhang

Carnegie Mellon University

Electrical & Computer Engineering

Thank You! Questions?

Beam-training on commercial 802.11ad/ay devices

Microsoft

- Override Rx-side beam-training, i.e., Rx uses a quasi-omnidirectional beam.
- AP performs sector-level sweeping (SLS) and selects the precoder yielding strongest received signal strength (RSS)
- Pros: Simple and fast

Carnegie

- Cons:
 - Coarse and not optimal impossible to exhaustively try codebooks
 - No CSI estimation Only reports RSS

Channel Estimation Problem

• Recall that the received signal can be formulated as

known variables: precoders and combiners

RSS |b| measured
& fed back by Rx
$$\rightarrow b = \mathbf{w}^T \mathbf{H} \mathbf{f} \gamma + \sigma$$

Variable needs to recover: CSI Matrix

• Hence, by vectorizing **H** as **x** and define $a = w \otimes f$ (Kronecker Product), we formulate channel estimation problem as

Known
$$A = [a_1, a_2, \dots, a_m]$$
 and corresponding $b = [|b_1|, |b_2|, \dots, |b_m|]$
recover x that $\min_x ||Ax| - b|^2$

Channel Estimation Methods – ACO & PhaseLift

• PhaseLift [2]: Compressive sensing-based recovery。

Microsoft

- Pros: Relatively accurate given enough measurements.
- Cons:

larnegie

niversity

- Large measurement overhead takes $\geq 4N_tN_r$ measurements.
- Computationally heavy long algorithm running time.
- Sharp phase transition arbitrarily bad estimation given to few measurements.
- Adaptive Codebook Optimization (ACO) [3]: Leverage signal property
 - Pros: medium overhead $4(N_t + N_r)$, relative accurate given simple environment
 - o Cons:
 - Requires a special codebook a few bad probe is fatal.
 - Low resolution the channel recovered is either $w^T H$ or Hf, which is rank 1.

[3] Candes, Emmanuel J., Thomas Strohmer, and Vladislav Voroninski. "Phaselift: Exact and stable signal recovery from magnitude measurements via convex programming." Communications on Pure and Applied Mathematics 66.8 (2013): 1241-1274.

[4] Palacios, Joan, et al. "Adaptive codebook optimization for beam training on off-the-shelf IEEE 802.11 ad devices." Proceedings of the 24th Annual International Conference on Mobile Computing and Networking. 2018.

Channel Estimation Methods – PLOMP & PLGAMP

• PLOMP & PLGAMP [4]: Find the complex channel from the dominant AoAs and AoDs.

- Pros: Fast convergence in certain low-rank scenarios.
- Cons:
 - Needs hardware-offset calibration need to measure $e^{j\Delta}$ first.
 - Fail when CSI matrix is not low-rank assume *L* is very small but this is not always true.
 - Fail if Tx and Rx not on the same elevation Only models signals on azimuth plane.
 - Still computationally heavy use PhaseLift as the first step.

[5] Zhang, Yi, et al. "Side-information-aided noncoherent beam alignment design for millimeter wave systems." Proceedings of the Twentieth ACM International Symposium on Mobile Ad Hoc Networking and Computing. 2019.