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Sub-6GHz band is becoming more and more crowded...

Sub-6GHz
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mmWave provides:
J Higher bandwidth, higher throughput.

J Higher directionality.

J More sensing opportunities.

Sub-6GHz
\

((‘. < | j;z;:‘:f-'A
mmWave can be easily blocked. X ‘ B
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Beamforming to combat occlusions.
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Channel estimation is critical to beamforming

* Adjust the phase & amplitude at each

antenna to obtain optimal beam
Phase

Shifter

Phase
Shifter patterns .

Y

Beam Patterns
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* To set the correct combiner and precoder,
one need to estimate channel, i.e., How the
wave propagates.
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mm\WWave asks for fast and accurate channel estimation methods.

60: 12Qiph 2\ +
m = Vr\
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Complex indoor Large antenna array

environment NOKIA AirScale [1] 64Tx 64Rx Massive ) -
MIMO mmWave antenna array High Mobility

[1] Image: https://www.rfwireless-world.com/



https://www.rfwireless-world.com/

@ TEXP:;S gﬂ\]lrﬂ);gle H Microsoft WHAT STARTS HERE CHANGES THE WORLD

The University of Texas at Austin Ul].ivel‘sity

Channel estimation is accomplished through a probing process.

O

~ "

known variables: precoders and combiners

RSS |b| measured - T
& fed back by Rx bl = |[w" Hfy + o

Variable needs to recover: CSI Matrix

Phase retrieval & difficult problem
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Existing approaches on channel estimation

802.11ad Sector Level
Sweeping (SLS)

Sweep through pre-defined directions.
Fast but inaccurate.

~

J

ACO [MobiCom’18]

Special codebook.
Medium overhead, but course channel estimation.

~

J

PhaseLift [CPAM’13]

Compressive sensing recovery.
Accurate, but slow & requires large number of probes.

~

J

PLGAMP/PLOMP
[MobiHoc’19]

Low-rank CSI assumption-based compressive sensing.
Fast when channel is sparse, otherwise inaccurate.

~

)
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2ACE investigates how channel matrices looks like,
and use the matrix property to improve compressive sensing.
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2ACE: Accelerated & Accurate Channel Estimation.

Overcoming low- Speed up Support different Support dynamic
rank structure estimation probing budgets environment

~

\
/
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How does actual channel matrix look like?

H ces B SVD 01 0 0
. ° (] ‘e T e e
: W i ey U|O . 0|V',oq = =0
] cee B O O O-S
_ >0.95 —— = =
K Energy captured by the first 5 | ——Trace 1
Zk—l Oy, K singular values g 99 —Trace 2
S — 5085 . —=Trace 3
O = ===Trace 4
k=1"k "~ = 08 —Trace 5
Y] [ .
O . = A1 Profile
Total energy 0.75 — A2 Profile
1 4 9 16 25
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We use a lower-bound to characterize the energy captured by the first
K singular values— Called Spectral Profile.

Energy captured by the first >,0_952 Y
2115—1 Oy K singular values s —Trace 1
S - 0 0.9 —=Trace 2
o Trace 3
k=10k \ % 085 =——Trace 4
Q 0.8 -—=Trace 5
Total energy S ~ A1 Profile
0.75 = A2 Profile
Spectral Profile: First K eigenvalues 1 4 9 16 25

account x% energy. K
K, x can be defined according to different
matrices.
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Use the spectral profile as a regularization — 2ACE

Minimize the squared error.

m)én —|||Y| blI5|H 1(Z, P)

subject to =Y /and\ X =7

Regularization through spectral profile P.

The problem can be solved via Alternating Direction Method of Multiplier (ADMM).
We then have the Augmented Lagrangian as follow:

1
L(X,Y, ZMN, 1) = 5 [[Y|-b|3+1(Z,P)+ < M,AX =Y >+ <N,X - Z > +%||AX - Y||§+§||X — 72

(See our paper for step-by-step math)
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2ACE: Enhancements

Algorithm 2 Adaptation of u

20 ptt*) =103,
Define primal residue i els;(m) 0
Forim = \/||AX(“'1) _y(t+1) ”3 + ||X(+1) — Z(t+1) ”§ 5: end if
How the constraints are satisfied 0

Define combiRed residue

(t+1)

) = i + (YD - YO ) Z(0)12)

2
"

rim
—adapt

——no adapt
500 1000 1500 2000

Number of measurements

MSE of CSI (dB)
%
(@]

How large is the step length

A
o
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2ACE: Enhancements
, 1
min EIIIYI — bll% +1(Z, P)

)
2
g —r=1
subjectto AX=Y and X=2Z . 20 —r=5150
=
: & | —r=20
Parallel refinement S 140
-40

500 1000 1500 2000
« Solving r candidate X in parallel Number of measurements

0
Spectral Initialization

« Initialize the candidate X according to the
best rank-r estimation.

——Spectral initialization
—Random initialization

500 1000 1500 2000
Number of measurements

MSE of CSI (dB)
R
o

A
o
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2ACE: Enhancements

Choice of Spectral Profiles

Algorithm 4 2ACE Algorithm to incorporate dynamic profile

1: if m >= 3n then Large probe number: no spectral profile
2:  // no need to use spectral profile w/ enough constraints
3: P={}

4: else if m < n then Small probe number: Coarse spectral profile

5 // focus on estimating 1st singular vector w/ too few constraints
6 P ={(r1,0.95)}
7: else
8
9

Medium probe number: Detailed spectral profile

: o P={(ri, /i), (r2, 2), (r3, 3), (ra, fa) }
. end if
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#Probes m is dependent on the size of the channel matrix.

fm WA\ Wy
K =
g
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What if there is no enough probing budget? Probing budget < N,.N,

Multiple antennas can be grouped as one “virtual”
antenna.

The beamforming weights on these elements stay the same.
The elements of the channel matrix are assumed to be the same.
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2ACE: Multi-resolution Channel Estimation

» By grouping N;/N, antennas into K groups, we
recover a CSI matrix of size % X % instead.

« Challenge: Minimize grouping error.

-- Selecting antennas with similar channels.

How to identify antenna with similar
channels without channel probing?
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2ACE: Multi-resolution Channel Estimation

* Phase offset comes from two parts:
o Hardware offset due to differences in length of transmission line.
= Calibrate through the method in M-cube [2]
o Phase difference in array response.
= Estimate through a rough angle estimation.

« We group the antennas with minimum
sum of phase offset difference.

j21Td
S— eJT((nr—l) cos (I){l)

[2] Zhao, Renijie, et al. "M-cube: A millimeter-wave massive MIMO software radio." Proceedings of the 26th Annual International Conference on Mobile Computing and Networking. 2020.
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Effectiveness of Multi-resolution (Simulation)

0

m
2
m - | ':
s 10
=
g Multi-resolution improves
U -20 2ACE by 2.5dB -4 dB
O Mean Squared Error (MSE).
<C
oV

-30

0 1000 2000 3000 4000
a) Number of Measurements
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2ACE: Confidence indicator

a |b|
-
I
I
I

: | 95% probes: Channel estimation
I W [ channelinference T H
E— |
-
L ] — 1T
Y - bl = |w Hfy + o]
5% probes: Verify with 5% probes,

- validation Calculate confidence as 1-error.
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2ACE: Confidence indicator - High confidence

__95% measurement:
channel inference

Adapt estimation,
Use all data to refine result.

NEEEE III!E

Obtain more accurate

5% measurement: channel H
validation

| ||||| "- ||||a

-
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2ACE: Confidence indicator - Low confidence

» Case (a): Not enough measurements.
o Query for more measurement.

__95% measurement:
channel inference

« Case (b): Enough measurements but
channel changes.
o Drop past measurements,
o Then query for more measurements

NEEEE III!E

5% measurement:
validation

| ||||| "- ||||a

-
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Evaluation

« Simulation
o Synthesize CSI matrix using multipath model.
o Generate CSI matrix using Wireless Insite ray-tracing.
» Testbed
o 2 laptops with Qualcomm QCA6320-based Baseband NIC
o QCA6210-based 32-element antenna array.
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CSI Estimation — NMSE (Simulation)

PLOMP and PLGAMEP suffers
O 1% from over-fitting, as reported.
)
°
w20 PhaselLift and Nuclear
%) converges much slower.
40 . o e o 2ACE w/ Multi-resolution
) erforms optimally across
0 500 1000 1500 | PR

(a) baselines.
Number of Measurements
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Beamforming — RSS (Simulation)

2ACE w/ Multi-resolution

gives 2-3 dB increment
compared to baselines.

0 500 1000 1500
(@) Number of Measurements



TEXAS i

The University of Texas at Austin Lh].l‘ Lo ¥ b].ty . M I c ro s 0ﬁ

WHAT STARTS HERE CHANGES THE WORLD

We evaluate beamforming RSS in an indoor environment.
L.

N
I 7.6m "1
Desk I I Desk“ J
3
=2
e | 8
Transmitter I'g o Receiver
| x S o
[7%] m o
_ ; / c 3
. =
Writing board J:/
blocks line-of-sight e
g %
. 8
Desk ((‘ ’)) (d) B
walls, -

shelves act as Legend: ((‘ ’)) T ((‘ ) RX LoS) &(‘ ) (LoS)
reflectors. DWOOd .t |:| . Metal
Wall
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Beamforming — RSS (Testbed)

2ACE w/ Multi-resolution gives
1-9 dB increment compared to
different baselines.

_68 ‘\ 1 1 1 L 1 ]
436 121 225 361 529 784 1024

(C) Number of Measurements
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Sensing — AoD Estimation

150} ] 35 T
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A (o € o\0 T o
o o @Q\(\Q’ RCat o
\“\Axa“‘g«e P \mw@"’«\
(@) pP (b)
Simulated Top-3 AoD Estimation Testbed dominant AoD Estimation

Error is nearly 0. Error is average 2.5 degree.
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Conclusion & Discussion

Propose spectral profile to drive channel estimation
» Spectral profile can also be applied to other domains besides channel estimation.

* Various optimization techniques for accelerating convergence.

«  Multi-resolution for low measurement budget.
* Multi-resolution can also be used for other compressive sensing algorithms.

« Simulation and testbed experiments show optimality on channel
estimation, beamforming gain and angle estimation.
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Beam-training on commercial 802.11ad/ay devices

» Override Rx-side beam-training, i.e., Rx uses a quasi-omnidirectional beam.
» AP performs sector-level sweeping (SLS) and selects the precoder yielding strongest
received signal strength (RSS)
* Pros: Simple and fast
« Cons:
o Coarse and not optimal — impossible to exhaustively try codebooks
o No CSI estimation — Only reports RSS

_J

60 GHz WiFi 60 GHz WiFi
Access Point (AP) Station (STA)
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Channel Estimation Problem

* Recall that the received signal can be formulated as
known variables: precoders and combiners

RSS |b| measured __ . /
& fed back by Rx b=w Hfy+o
!

Variable needs to recover: CSI Matrix

* Hence, by vectorizing H as x and define a = w & f (Kronecker Product),
we formulate channel estimation problem as

Known 4 = [a,,a,, -, a,,] and corresponding b = [|b4], | b, ], ", | by |]
recover x that min ||Ax| — bl
X
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Channel Estimation Methods — ACO & PhaselLift

» PhaselLift [2]: Compressive sensing-based recovery,
o Pros: Relatively accurate given enough measurements.
o Cons:
= Large measurement overhead - takes = 4N;N,, measurements.
= Computationally heavy — long algorithm running time.
= Sharp phase transition — arbitrarily bad estimation given to few measurements.

« Adaptive Codebook Optimization (ACO) [3]: Leverage signal property
o Pros: medium overhead 4(N; + N,.), relative accurate given simple environment
o Cons:
= Requires a special codebook — a few bad probe is fatal.
= Low resolution — the channel recovered is either w"H or Hf, which is rank 1.

[3] Candes, Emmanuel J., Thomas Strohmer, and Vladislav Voroninski. "Phaselift: Exact and stable signal recovery from magnitude measurements via convex

programming.” Communications on Pure and Applied Mathematics 66.8 (2013): 1241-1274.
[4] Palacios, Joan, et al. "Adaptive codebook optimization for beam training on off-the-shelf IEEE 802.11 ad devices." Proceedings of the 24th Annual International Conference on Mobile

Computing and Networking. 2018.
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Channel Estimation Methods — PLOMP & PLGAMP

* PLOMP & PLGAMP [4]: Find the complex channel from the dominant AoAs and AoDs.
L paths Array response
l (Azimuth AoD ¢P and AoA ¢)
A

L

\

[
j2md D A .
Hnt,nr _ hl . eT((nt—l) cos ¢; +(ny—1) cos ¢ )eJA

=1 r
Complex response Hardware offset

* Pros: Fast convergence in certain low-rank scenarios.
« Cons:
o Needs hardware-offset calibration — need to measure e/ first.
o Fail when CSI matrix is not low-rank - assume L is very small but this is not always true.
o Fallif Tx and Rx not on the same elevation - Only models signals on azimuth plane.
o Still computationally heavy — use PhaselLift as the first step.

[5] Zhang, Yi, et al. "Side-information-aided noncoherent beam alignment design for millimeter wave systems." Proceedings of the Twentieth ACM International Symposium on Mobile Ad

Hoc Networking and Computing. 2019.
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